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Abstract 

In this paper, we deal with a single non reliable server Mx/G/1 queue with multiphase service and setup. The customers arrive in 

batches according to a Poisson process. Two types of services are provided to the customers, the first “essential” service and second 

multiphase “optional” service. After the completion of the essential service, the customer either leaves the system with probability (1-r1) 

or join the first optional service with probability r1; again after completing the first phase optional service, either he leaves or joins second 

phase of optional service with probability r2 and similarly in continuation at the end of (k-1)th  phase optional service, he may opt kth 

phase of optional service with probability rk or may leave the system with probability (1-rk). Both essential and optional services are 

provided by same single server. While the server is working, he is subject to breakdown according to Poisson process. When the server 

breaks down, he requires repair at repair facility where a repairman renders repair of failed server according to general distribution. By 

introducing supplementary variable technique and generating function method, some queueing and reliability characteristics of the system 

are derived. We facilitate numerical results to illustrate the effect of different parameters on several performance indices.     

Key-words: Batch arrivals, Unreliable server, Setup time, Multiphase optional service, Supplementary variable, Generating  

                   function, Queue size, Reliability.   

 

  Introduction 

During the last few decades considerable attention has been 

paid to studying the batch arrival queue, which has been well 

documented because of its interdisciplinary character in 

queueing systems. A single server batch arrival queue with 

returning customers has been proposed by Falin (2010).The 

evolution process of queues at signalized intersections under 

batch arrivals is considered by Yang and Shi (2018). A variable 

service speed single server queue with batch arrivals and 

general setup times is analyzed by Yajima and Phung-Duc 

(2020). 

Optional phase service systems have been discussed in the 

literature for their application in various areas such as computer, 

communication, manufacturing and other many systems. These 

queueing systems are characterized by the feature that all 

arrivals demand the first essential service, whereas only some of 

them demand second optional service which is provided by the 

same server.. Functional analysis method The M/G/1 queueing 

model with optional second service is studied by Gupur and 

Kasim (2014) by functional analysis method.  

Classical studies on queueing systems use perfect (reliable) 

servers. However in many real time systems, the server may 

meet unpredictable breakdowns. Therefore, queueing models 

with server breakdowns are realistic representation of the 

system. Performance analysis of bulk arrival queue is made by 

Singh et. Al. (2018) with balking, optional service, delayed 

repair and multiphase repair  

The purpose of this work is to obtain explicit expressions 

for various queueing and reliability indices for unreliable server 

queue with bulk arrival. We describe the model and introduce 

some notations in section 2. Section 3 is devoted for the analysis 

part of the problem, where we obtain probability distribution of 

the system state. These results are obtained by the method of 

supplementary variable. Since the breakdowns and repair 

process are independent of the servicing process, then the 

reliability and availability are defined in the usual way in 
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section 4. Some concluding remarks are outlined in last section 

5.  

 

 

 

 

2. Model Description 

Mx/G/1 queueing system with unreliable server, setup and 

k-phase optional service is considered by making the following 

assumptions: 

 The customers arrive at the system according to a 

compound Poisson process with random batch size denoted 

by random variable ‘X’ with distribution ai=Pr[X=i]. 

 There is a single unreliable server who provides two kinds 

of general heterogeneous services to the customers on a 

first come first served (FCFS) basis.  

 The first essential service is needed to all arriving 

customers; the duration of essential services are general 

distributed. Its distribution function, density function and 

hazard rate function are B0(x), b0(x) and μ0(x), respectively. 

 As soon as the first essential service of the customer is 

completed, then with probability r1 he may demand for first 

phase second optional service or may leave the system with 

probability (1-r1). After the completion of first phase 

optional service he may go for second phase optional 

service with probability r2 or may leave the system with 

probability (1-r2). In general, the customer may opt any of 

kth ( mk1  ) phase optional service with probability 

rk or may leave the system with probability (1-rk).  

  The k type second optional service time follows an 

arbitrary distribution and its distribution function, density 

function and hazard rate function are Bk(x), bk(x) and μk(x), 

respectively ( mk1  ). 

  We assume that the life time of a server is exponentially 

distributed with rate α1 and α2 in first essential service and 

second optional service, respectively.  

 If the server breaks down during the service, the customer 

just being served before server breakdown waits for the 

server to complete its remaining service.  

 The repair time distributions for both essential and kth 

optional service phases are arbitrarily distributed with 

probability distribution functions R0(y) and Rk(y), 

respectively. Also let r0(y), rk(y) and β0(y), βk(y) are the 

corresponding probability density functions and hazard 

rates.  

 The server will be recovered after completion of the repair 

and starts service of the customers immediately. 

Notations 

 Mean arrival rate of the customers 

X           Random variable denoting the batch size 

X(z) Generating function for batch size X 

α0, αk Mean failure rate of server in both phases,      

               k=1,2,…,m 

0, θ0, 0  Service rate, setup rate and repair rate in  

               first essential service 

k, θk, k  Service rate, setup rate and repair rate in kth  

               phase (k=1,2,…,m) second optional service 

0(x), θ0(y), 0(y) Hazard rates of service, setup and  

                              repair for essential service 

k(x), θk(y), k(y) Hazard rates of service, setup and  

                               repair for optional  service 

b0(x), s0(y), r0(y) Probability density functions for 

service time, setup time and repair 

time in essential service 

bk(x), sk(y), rk(y) Probability density functions for 

service time, setup time and repair 

time in kth phase optional service, 

k=1,2,…,m 

B0(x), S0(y), R0(y) Distribution functions of service 

time, setup time and repair time for 

essential service 

Bk(x), Sk(y), Rk(y) Distribution functions of service 

time, setup time and repair time for 

kth phase optional service, 

k=1,2,…,m 

),()0( xtPn  Joint probability that there are n 

customers in the queue at time t 

when the server is busy with first 

essential service and elapsed service 

time lies in (x, x+dx) 

),,()0( yxtSn  Joint probability that there are n 

customers in the queue at time t 

when the server is in setup state 

while broken down during first 

essential service and the elapsed 
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service time for the customer under 

service is equal to x, elapsed setup  

time lies in (y, y+dy) 

),,()0( yxtRn  Joint probability that there are n 

customers in the queue at time t 

when the server is under repair state 

while broken down during first 

essential service and the elapsed 

service time for the customer under 

service is equal to x, elapsed repair 

time lies in (y, y+dy) 

)()( tP k
n  Joint probability that there are n 

customers in the queue at time t 

when the server is busy with kth 

phase optional service, k=1,2,..,m  

),()( ytS k
n  Joint probability that there are n 

customers in the queue at time t 

when the server is in setup state 

while broken down during kth phase 

optional service and elapsed setup  

time lies in (y, y+dy), k=1,2,…,m 

),()( ytR k
n  Joint probability that there are n 

customers in the queue at time t 

when the server is in setup state 

while broken down during kth phase 

optional service and elapsed repair 

time lies in (y, y+dy), k=1,2,…,m 

 

Hazard rates are given by: 
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In order to provide analytic solution, the following probability 

generating functions are defined 
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3.  The Analysis 

We construct the partial differential equations governing the 

model for the system and assume the elapsed service time, 

elapsed setup time and the elapsed repair time as supplementary 

variables: 
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The following boundary conditions are taken into consideration: 
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Taking Laplace transform of eqs (1)-(7) with respect to t, we get 
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Taking Laplace transforms of boundary conditions (8)-(16), we 

obtain 







0 0
)0*(

1
)*(

1
)0*( )(),()1()()0,( dxxxsPrsPsP

nk
k

nkn                                                                                                     

                                                                               (24)                      

 








0
1

*
0

)0(*
1

)*(
1

)0*(
0

)()(),()1(

)()0,(

sQadxxxsPr

sPsP

n

i

inik

k
k





     

 (25)                

),()0,,( )0*(
0

)0*( xsPxsS nn                                  (26)                                                     

)()0,( )*()*( sPsS k
nk

k
n                                         (27)                                                             





0 0

)0*()0*( )(),,()0,,( dyyyxsSxsR nn                (28)                                                                                      





0

)(*)*( )(),()0,( dyyysSsR k
k

n
k

n                       (29)                                                                                







0 1
)1*()*( )(),()( dxxxsPsP k

k
n

k
n                   (30)                                                    







0 1
)1*()*( )(),()0,( dyyysSsS k

k
n

k
n                 (31)                                                                







0 1
)1*()*( )(),()0,( dyyysRtR k

k
n

k
n                (32)                                                            

Theorem 1: The Laplace Stieltjes transforms and moment 

generating functions when the server is in busy state, under 

setup state and repair state respectively, are given by   
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Theorem 2: The marginal generating functions are obtained as 

),0,(
),(

),(1
),(

)1(

0

0
*

)0(
zsP

zs

zsb
zsP











 





                (40)                                                                                                                         

),0,(
),(

),(
)(

)0(*0
*

)(
zsP

zs

zsbr
zP

kk

kk



















               (41)                                                                  

),0,(
))(1(

))(1(1

),(

),(1
),(

)0(*
*
0

0

0
*

0
)0(*

zsP
zX

zXs

zs

zsb
zsS



























 











                             

                                                                               (42)       

),0,(
),(

),(
),(

)0(*0
*

)(*
zsP

zs

zsrb
zsS

kk
k

k



















     (43)                                         

),0,(
))((

))((1

))((

))((1

),(

),(1
),(

)0(*
*
0

*
0

0

0
*

0
)0(*

zsP
zXs

zXsr

zXs

zXss

zs

zsb
zsR











































 
















                                                                               

(44)  

),0,(
))((

)))((1(

))((

))((1

),(

),(
),(

)0(*1

*

*
0

*
)(*

zsP
zXs

zXss

zXs

zXss

zs

zsbr
zsR

n

k

n
n

k

kk

k
k

k












































































                                                                               

(45)   

where 

  
),(),(}),(}{),({

1)()()),((
),0,(

0
*

0
*

*
)0(*

zszsbrzszzsb

sQzXszs
zsP

kkkk

kk










                  

                                                                               (46) 

 ))(()(),( *
0000 zXsszXszs    

mkzXsr

zXsszXszs

k

n
n

kkkk










1,))((

))(()(),(

1

1

*

*





 

 

Theorem 3: Probability that server is in idle, busy with both 

phases of service, setup and under repair, respectively are given 

by 
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4. Reliability Analysis 

In order to analyze reliability indices, we consider set 

up and breakdown states as absorbing states. Then using 

notations and assumptions as defined in sections 2 and 3, we get 

the following set of equations: 
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Boundary conditions: 
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Theorem 5:  The Laplace Stieltjes transforms and moment 

generating functions of the state probabilities are given by: 
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where mkzszXs kk  0),,())((   

and zw is the root of equation 
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Proof: Taking Laplace Transform of equations (51)-(56), we 

get:  
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 And boundary conditions become 
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Multiplying (61) with suitable power of z and some over n and 

using defined generating functions, we have 
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From (63) and (64) we get 
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Eqs (67) and (68) give 
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                                                                             (70) 

By solving eqs (65) and (66) and using (70), we get 
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probability generating function of the number of customers in 

the queue when setup and breakdown states are assumed to be 

absorbing states. Therefore, 
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We can find )(* sQ by solving above equation for z=1 with the 

help of Rouche’s theorem.  Thus we get  
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where zw is the root of equation 
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(i) The Laplace Stieltjes transform of system availability (A(t)) 

at time t is given by 
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(ii) The steady state availability of the server is given by 
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(iii) The Laplace Stieltjes transforms of the expected number of 

failures of the server in the first essential service and the second 

optional service up to time t (M0(t), Mk(t)) are given by: 
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(iv) The steady state failure frequency of the server is given by 
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(v) The Laplace transform of the reliability function R(t) of the 

server is given by 
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       zw is the root of equation 
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(vi)The mean time to the first failure (MTTFF) of the server is 

given by 

Is PssQsRdttRMTTFF  



 )(lim),()( *
0

*

0

 

Therefore  

























































k

n
nkk

k

n
nkk

m

k
kk

xrbbr

xrbb

rQMTTFF

1
10

*
0

*
0

1
10

*
0

*

1
0

*

)()(}){()1(1{

)()())(1(

)0(







                                                                               

(81)     

 

5.  Concluding Remarks 

We have discussed an unreliable Mx/G/1 queueing 

system with second multiphase optional service with setup. All 

customers demand the first “essential” service, whereas only 

some of them demand the k-phase “optional” service. By using 

the supplementary variable method, we have modeled the 

system as a Markov chain to obtain the stationary queue indices 

and reliability measures of interest. For our model, we have 

been able to derive the state probabilities that we can use to 

calculate the commonly used relevant performance measures. 

Many existing queueing systems dealing with customer service 

problems are special cases of our model. Efforts have also been 

made to illustrate the system indices numerically to validate the 

analytical results.  

The considered queueing model represents many 

practical problems in many manufacturing, production, and 

computer and communication systems etc. wherein the server is 

not continuously available for providing service for the 

customers, such as service interruptions due to server 

breakdowns. Our model dealt stochastically those with 

situations arising in daily life when a batch of customers appear 

in the system to get service and the service time consists of 

preliminary service phase followed by a second optional service 

phase. The model investigated in this paper is more realistic 

than those existing ones, since it takes the behavior of arriving 

customers as well as optional service rendered by the server.  
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